Very High-Spin Organic Polymer: π -Conjugated Hydrocarbon Network with Average Spin of $S \ge 40$

Andrzej Rajca,* Suchada Rajca, and Jirawat Wongsriratanakul

Department of Chemistry University of Nebraska Lincoln, Nebraska 68588-0304 Received March 18, 1999

Current interest in very-high-spin organic molecules and polymers is driven by a possibility of attaining purely organic magnetic materials based upon through-bond magnetic interactions (exchange coupling).¹⁻³ The progress in this area is measured by the synthesis of molecules and polymers with increasing values of the spin quantum number (S) in the electronic ground state.⁴⁻⁸ From both synthesis and materials points of view, polymers are among the most desirable targets. However, all polymers reported to date have only S < 5,^{6–8} significantly below S = 10 obtained for a well-defined π -conjugated molecule (oligomer).⁵

We propose a novel design for a high-spin polymer as implemented in polyradical network 1.9,10 Polyradical 1 consists of S = 2 macrocyclic modules, which are cross-linked with S =¹/₂ connecting modules.¹¹ In **1**, high density of macrocycles should

address the problems with defects; the alternating connectivity of two types of radical modules with unequal spins should facilitate large net S values for either ferromagnetic or antiferromagnetic coupling between the modules.^{11–13} Although $2p_{\pi^-}$ connectivity in **1** is compatible with ferromagnetic coupling,^{1–3} out-of-plane twisting within the π -conjugated system, especially about the CC bonds at the connecting biphenyl modules, may lead to reversal of spin coupling (ferromagnetic to antiferromagnetic).¹⁴ This report describes synthesis and magnetic characterization of 1 with an average spin of $S \ge 40$.

- (4) Matsuda, K.; Nakamura, N.; Inoue, K.; Koga, N.; Iwamura, H. Bull. Chem. Soc. Jpn. 1996, 69, 1483.
- (5) Rajca, A.; Wongsriratanakul, J.; Rajca, S.; Cerny, R. Angew. Chem., Int. Ed. 1998, 37, 1229.
- (6) Nishide, H.; Miyasaka, M.; Tsuchida, E. Angew. Chem., Int. Ed. 1998, 37, 2400.

 - (7) Anderson, K. K.; Dougherty, D. A. Adv. Mater. 1998, 10, 688.
 (8) Bushby, R. J.; Gooding, D. J. Chem. Soc., Perkin Trans. 2 1998, 1069.
 (9) Mataga, N. Theor. Chim. Acta 1968, 10, 372.
- (10) Rajca, A. In Molecule-Based Magnetic Materials; Turnbull, M. M., Sugimoto, T., Thompson, L. K., Eds.; ACS Symposium Series 644; American Chemical Society: Washington, DC, 1996, Chapter 17. (11) Rajca, A.; Wongsriratanakul, J.; Rajca, S. J. Am. Chem. Soc. 1997,
- 119. 11674
- (12) Rajca, A.; Lu, K.; Rajca, S. J. Am. Chem. Soc. 1997, 119, 10335.
- (13) Itoh, K.; Takui, T.; Teki, Y.; Kinoshita, T. Mol. Cryst. Liq. Cryst. 1989, 176, 49.
- (14) Dvolaitzky, M.; Chiarelli, R.; Rassat, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 180. Rajca, A.; Rajca, S. J. Chem. Soc., Perkin Trans. 2 1998, 1077

Scheme 1. Synthesis of Polyradical 1^{*a*}

^a (a) tBuLi, THF, 195 K (2 h), 253 K (15 min), (b) ZnCl₂, from 195 K to ambient temp, (c) Pd(PPh₃)₄ (3% mol per CC bond), 5 (6 equiv) or 4 (1 equiv), THF, 373 K, (d) Na/K, 283 K, (e) MeOH, (f) I₂, 170-167 K.

The synthetic route to the network polyether 2, precursor to polyradical 1, relies on multistep syntheses of tetrafunctionalized macrocyclic calix[4]arene modules 3 and 4. Polymerization of 3 and 4 is expected to provide a polymer with large density of macrocyclic rings from the monomers and intramolecular macrocyclizations (annelations) (Scheme 1).

The final steps in the synthesis of 2 are implemented with two Negishi reactions:¹⁵ (1) a single 2-fold symmetric *cis/trans* isomer of tetrabromocalix[4]arene 3 and a racemic linker 5 gives a mixture of stereoisomers of 4 in 17% yield, (2) coupling of 3 and 4 (both ca. 0.015 M) provides a polyether network (Scheme 1).^{16,17} In the polymerization step, the onset of the gelation of the reaction mixture and, also, the relative amounts of the benzenesoluble and benzene-insoluble product are variable.¹⁸ The benzenesoluble product is purified by thin-layer chromatography (silica, methanol/ether, 1/3); the immobile fraction corresponds to polyether 2.

Gel permeation chromatography (GPC) with refractive index and light-scattering detectors ($\lambda = 690$ nm at 45°, 90°, 135°) for polyether 2 in tetrahydrofuran (THF) suggests polydisperse molecular mass distributions. The weight-average (M_w) and number-average molar masses (M_n) are in the range (8×10^4) - (5×10^5) and $(4 \times 10^4) - (3 \times 10^5)$ Da, respectively $(M_w/M_n =$ 2-5). Using rigorous Schlenk techniques, 2 with $M_{\rm n} \ge 1 \times 10^5$ Da is reproducibly obtained. Both ¹H NMR and IR spectra for 2 are similar to those observed for the previously reported polyarylmethyl polyethers, except that the ¹H resonances in 2 are relatively broad.11

Preparation of polyradical 1 starts with treatment of polyether **2** (0.8–1.7 mg) with Na/K alloy in THF- d_8 (40–80 μ L) at 283 K for 4 days.¹⁹ The reaction mixture, which is partially insoluble in THF-d₈, is filtered (course glass frit) into 5-mm o.d. quartz tube. Iodine is added in small portions at 170-167 K until the reaction mixture turns green (Scheme 1).5

⁽¹⁾ Dougherty, D. A. Acc. Chem. Res. 1991, 24, 88.

 ⁽²⁾ Iwamura, H.; Koga, N. Acc. Chem. Res. 1993, 26, 346.
 (3) Rajca, A. Chem. Rev. 1994, 94, 871.

⁽¹⁵⁾ Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821. (16) For another example of cross-linked polyarylmethane, see: Urban, C.; McCord, E. F.; Webster, O. W.; Abrams, L.; Long, H. W.; Gaede, H.; Tang, P.; Pines, A. *Chem. Mater.* **1995**, *7*, 1325. (17) Tetrabromocalix[4]arene **3** is obtained by means of methodology

similar to that previously described (ref 12); the C_s -symmetric and most soluble isomer of the four available cis/trans isomers is used.

⁽¹⁸⁾ Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, 1953.

⁽¹⁹⁾ MeOH quench of the carbopolyanion (from 2) gives the corresponding polyarylmethane 6 (Scheme 1) (¹H NMR and IR); GPC profiles for 6 and the corresponding 2 are nearly superimposable.

Figure 1. SQUID magnetometry for polyradical **1** in THF- d_8 . Plot A: χT vs *T*. Plot B: M/M_{sat} vs H/T. Representative parameters (with standard errors) for the number average, $S_n = 48 \pm 2$, ($S_s \approx 66$) at 1.8 K: $p = 0.968 \pm 0.003$ and $M_{sat}10^2 = 1.072 \pm 0.004$ emu (in the units of magnetic moment) with the parameter dependence of 0.094; S_o , n, and w_{12} are set to 6.0, 13, and 0.2, respectively. Quantitative conversion of 1.24 mg of **2** to **1** should give $M_{sat}10^2 = 2.50$ emu; i.e., $M_{sat} = 0.43 \mu_B$ (43%). At T = 3, 5, 10, and 20 K, the S_n are 45, 40, 30, and 20, respectively.

X-band ESR spectra for 1 in THF- $d_8/2$ -methyltetrahydrofuran (~1/5) at 80 K show an intense single-line resonance in the $\Delta m_s = 1$ region ($g \approx 2.0$) and a relatively weak $\Delta m_s = 2$ resonance. Magnetization (*M*) for 1 in THF- d_8 is measured as a function of magnetic field (H = 0-5.0 T) and temperature (T = 1.8-160 K), using a SQUID magnetometer.²⁰ Plots of χT vs T ($\chi = M/H$, magnetic susceptibility), show saturation (as a downward turn in the plot) at relatively small values of H/T; at the low H (0.005 T), the χT increases even near T = 1.8 K (Figure 1A). Plots of M/M_{sat} vs H/T ($M_{sat} = M$ at saturation) show a steep temperature-dependent rise at low fields and slow saturation at high fields, compared to a single Brillouin function (Figure 1B). These qualitative features of the magnetic data suggest mixtures of spin systems with high *S* and the presence of thermally populated excited states with relatively low *S*.

For quantitative analysis of magnetic data, number-average (S_n) and spin-average (S_s) spin quantum numbers are defined, analogous to M_n and M_w .²¹ For a sample of 1, $\chi T \approx 6.7$ emuK/mol at 1.8 K and $M_{sat} = 0.43 \mu_B$ are obtained (Figure 1), corresponding to the lower bound of $S_s \approx 26$ and spin concentration of 43%, respectively.²²

Average S, independent of mass balance in the generation of polyradical, is obtained from numerical fits to linear combinations of Brillouin functions (Figure 1B).³ A straightforward method for generation of Brillouin functions with a minimum of variable parameters for 1 is a simple percolation model, based on linear chains of alternating spin- $1/_2$ linkers and spin- S_0 macrocyclic modules, $S_0 - \frac{1}{2} - (S_0 - \frac{1}{2})_{n-3} - S_0 - \frac{1}{2} - S_0$, where $S_0 = 2 - 6$ and $n = 9-13.^{3,11,23}$ By assuming identical probability p for finding an unpaired electron at each triarylmethyl site (yield per site 100p %), the spin systems, resulting from the defects at the spin- $\frac{1}{2}$ sites, are explicitly enumerated. The defects at the spin- S_0 modules are approximately accounted for by pS_0 scaling and explicit addition of spin- $\frac{1}{2}$ systems (as fraction w_{12}). Either two (p and $M_{\rm sat}$) or three $(p, M_{\rm sat}, w_{12})$ variable parameters are used; only p is related to the average spin S_n .²⁴ The S_n of **1** roughly correlates with the molecular weight of the corresponding polyether 2. Thus, **2** with $M_n \ge 10^5$ Da reproducibly give **1** with $S_n \ge 40$ (at 1.8 K); the best preparation of **1** gives $S_n = 48 \pm 2$ at 1.8 K (Figure 1B). Polyethers 2 with the lowest $M_{\rm n} \approx 4 \times 10^4$ Da give 1 with $S_n \ge 17$. For all samples of **1**, the S_n sharply decrease with increasing T (Figure 1).²⁵

Polyradical network 1 possesses number average spin of $S \ge 40$, a new record spin value for polymers. The results indicate that polymer networks with cross-linked macrocyclic modules with unequal spin are promising targets for very-high-spin polymers.

Acknowledgment. This research was supported by the National Science Foundation (CHE-9510096 and CHE-9806954). We thank Mr. Q. R. Huang for preliminary GPC studies. MS analyses were carried out at the Nebraska Center for Mass Spectrometry.

JA990881D

⁽²⁰⁾ Following the magnetization studies, the samples are allowed to attain room temperature for several weeks, until the paramagnetic susceptibility is <1% of the original value, and, then, the identical sequence of measurements is repeated for point-by-point background correction. Both the negligible magnetic moment for such decomposed samples (including low *H* and *T*) and the background correction preclude interference from magnetic transition metal impurities.

⁽²¹⁾ Average S: number-average, $S_n = \sum_i x_i S_i \sum_i x_i$ and spin-average, $S_s = \sum_i x_i S_i \sum_i \sum_i x_i S_i$, where x_i is a fraction of spin systems with spin-value S_i .

⁽²²⁾ Magnetic susceptibility (χ) and magnetization at saturation ($M_{sat} = 0.2-0.5 \mu_B$) are calculated per mole of the triarylmethyl ether moiety in 2. (23) Stauffer, D. Introduction to Percolation Theory; Taylor and Francis:

London, 1985. (24) All constant parameters, such as *n* and S_0 (and w_{12}), have little effect

on the number average spin (S_n) , provided that $S_n \ll nS_0 + n/2 + 1/2$.

⁽²⁵⁾ In the previously studied small-molecule polyradicals, with biphenylbased coupling pathways, S had a constant value at low temperatures ($T \le 5$ K) and only slowly decreased at higher temperatures. For collinear $S_1 - S_0 - S_1$ spin trimers ($S_1 \ge S_0 = \frac{1}{2}$), which might be viewed as fragments of 1, the ground states are expected to have a large net spin for either ferromagnetic or antiferromagnetic pairwise exchange coupling; the lowest excited states are low-spin in either case.¹¹ Large out-of-plane twistings of the π -conjugated system of 1 may lead to very weak ferromagnetic or antiferromagnetic intermodule exchange couplings with the resultant near degeneracy of the ground and excited states. Defects and through-space antiferromagnetic interactions between the polymer molecules or branches may also contribute to such near degeneracies.³ Defects, antiferromagnetic couplings, and an incomplete mass transfer during preparation of 1 may be responsible for the measured low spin concentration ($M_{sat} \le 1.0 \mu_B$).